
DETERMINATION OF THE RHEOLOGICAL PROPERTIES OF LIQUIDS FROM RESPONSE 

FUNCTIONS OF THE FLOW STRUCTURE IN A CAPILLARY TUBE 

A. B. Golovanchikov and N. V. Tyabin UDC 532.137:66.01 

A method is proposed for determining the rheological properties of liquids from 
response functions recorded during flow of the liquids in capillary tubes, and 
equations are derived connecting shear stresses and velocity gradients with pa- 
rameters of the response functions. 

There are currently several works in which functions of the distribution of residence 
time (response functions) were determined for the laminar flow of viscous and nonviscous 
liquids in tubes [1-3]. 

Thus, the problem of determining response functions from known flow kinematics poses no 
particular difficulties. 

The inverse problem of determining the velocity profile v = v(r) in tubes from the re- 
sponse functions was solved in [4]: 

' 2=__ray ~ + k. 

S o l u t i o n  o f  t h e  l a t t e r  p r o b l e m  p r e s u p p o s e s  t h e  p o s s i b i l i t y  o f  f i n d i n g  t h e  v e l o c i t y  g r a -  
d i e n t  ~ = ~ ( r )  f rom t h e  r e s p o n s e  f u n c t i o n s  i n  a c a p i l l a r y  t u b e  and ,  i n  t h e  f i n a l  a n a l y s i s ,  
o f  d e t e r m i n i n g  t h e  r h e o l o g i c a l  f u n c t i o n  ~ = ~ ( r ) .  

Actually, in the laminar flow of liquids in a capillary tube, the fraction of particles 
moving a distance r from the axis in an annular cross section is determined by the equa- 
tion [i] 

dq _ 2~rvdr --CdO. 
q zR~vav (i) 

I f  t h e  l e n g t h  o f  t h e  c a p i l l a r y  t u b e  i s  L, t h e n  t h e  t i m e  t = L /v ,  and t h e  mean r e s i d e n c e  t i m e  
t = L /Vav .  Then 0 = Vav/V and 

dO = - -  (oav]oD do. (2) 

Substituting the value dO in (i), we obtain 

On the other hand, from Eq. (I) 

= 
2r~ 

" ( 3 )  

2 r v d r  = CdO, 
R2oav 

and after integration with allowance for (2) we obtain 

0 

(r/R)~ _- ~ COdO. 
ol 

(4) 

Substituting the value r/R in (3), we have 
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Fig. i. Curves for determining the rheological properties 
of a 1.5% CMC solution in water: a) response Ci-curve ob- 
tained in the flow of this solution in a capillary tube of 
l-m length and 4-mm diameter with a pressure gradient of 64 
mm; b) rheological flow curves: I) experimental points ob- 
tained after replotting the C i curve with Eqs. (7) and (8); 
2) experimental points corresponding to the dependence of 
the shear stresses at the wall of the tube on the mean ve- 
locity gradient (curve II); 3) experimental points corres- 
ponding to dependence of shear stresses attube wall on 
velocity gradient at the wall (Weinsberger--Rabinowitsch-- 
Mooney) (curve I). Ci, mm; t, sec; T, N/m2; ~ = dv/dr, sec -z. 

0 

2Vav (b!COdO)O, ~" 
- c-Y6  . 

Converting to the dimensionless variables C and 0, 

t 
2L(c  2)05 (Scitdt) ~ 

R C i  t~ t~ (5) 

S i n c e  we do n o t  know t h e  mean r e s i d e n c e  t i m e  ~ o r  t h e  mean c o n c e n t r a t i o n  Cio ,  we w i l l  

use the property of the C-function [5].I C0d0~l, from which 
el 

te 

cij  -- citdt. 
t z (~) 

Finally, substituting the value Cio[ 2 from Eq. (6) in (5), we obtain the velocity gradient in 
the capillary tube as a function of time and the response function 

te t 

RC~ tz t I t t " (7) 

S i n c e  T = Apr /2L i n  t h e  f l o w  o f  any  l i q u i d  in  a c a p i l l a r y  tube, t h e n  f rom (4) and (6) 

ApR t te 

t |  t l ( 8 )  

E q u a t i o n s  (7)  and (8)  c o n n e c t  t h e  s h e a r  s t r e s s e s  and v e l o c i t y  g r a d i e n t s  i n  p a r a m e t r i c  f o rm ,  
which  i s  c o n v e n i e n t  f o r  p l o t t i n g  a r h e o l o g i c a l  f l o w  c u r v e .  

F i g u r e  1 shows t h e  r e s u l t s  o f  m e a s u r e m e n t  o f  t h e  r h e o l o g i c a l  p r o p e r t i e s  o f  a 1.5% s o l u -  
t i o n  o f  c a r b o x y m e t h y l c e l l u l o s e  i n  w a t e r  f rom t h e  r e s p o n s e  C - f u n c t i o n  and Eqs .  (7)  and ( 8 ) .  

The response C-curve was determined using the well-known method employed in [6]. For 
this purpose, in a solution flow in a capillary tube i m long and 4 mm internal diameter with 
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Fig. 2. Response C i curve for  
liquids having a limiting shear 
stress. 

a pressure drop corresponding to 64 mm H20, we introduced about I ml of the same CMC solu- 
tion -- but saturated with NaCI -- in the beginning of the capillary tube tO serve as an indi- 
cator. A concentration meter installed at the tube outlet automatically determined and con- 
tinuously recorded the concentration of outgoing particles of the indicator in the form C i = 
Ci(~) (Fig. la). This function was replotted with Eqs. (7) and (8) into a rheological flow 
curve (Fig. ib). Also shown here and in Fig. ib are results of capillary viscometry of the 
same solution by the well-known Weinsberger--Rabinowitsch--Mooney method [7]. 

While the well-known and proposed methods of measuring the rheological properties of 
liquids are nearly the same in terms of accuracy, the latter is much more productive: it 
requires a single test at a fixed flow rate, instead of the 10-12 tests at different rates 
and pressure drops typical of the Weinsberger--Rebinowitsch--Mooney method. 

Also, the inexact operation of numerical differentiation in the well-known method of 
capillary viscometry is replaced by the more accurate operation of numerical integration by 
Eqs. (7) and (8). However, the proposed method of measuring rheological properties from the 
response C-curve in a capillary tube applies to liquids, where molecular diffusion of the in- 
dicator is very slight in recording residence-time distribution functions [8, 9]. For gases, 
where molecular diffusion is comparable to convective mass transfer, the response function 
characterizes not only the velocity profile in the capillary tube, but also the distribution 
of indicator in the longitudinal and transverse directions due to concentration gradients 
and diffusion. Thus, replotting the response C-function of a gas flow in a capillary tube 
into a rheological flow curve with Eqs. (7) and (8) could lead to substantial errors. 

In determining the rheological properties of a large class of non-Newtonian fluids hav- 
ing a limiting shear stress To from the response function, difficulties may arise in connec- 
tion with division of the flow as a whole in the tube into zones of nongradient and gradient 
flow [i0]. 

Liquid particles located in the nongradient zone leave the tube nearly simultaneously at 
time intervals (tl--tb) , where t b+ t I. This is reflected on the response curve (Fig. 2) in 
the form of a concentration peak in the time interval (tl--tb). The intervals for Eqs. (7) 
and (8) characterizing the moments of the areas under the response C curve cannot be exactly 
determined because of the imprecise recording (due to recorder inertia) of the concentration 
of the indicator in the vicinit Z of the peak. The following procedure can be used in this 
case: the mean residence time t, in accordance with its physical significance, is determined 
from the formula t = ~R2L/q, while the mean residence time of the particles in the gradient 
zone, as the coordinate of the geometric center of gravity of the area under the response 
curve in the interval (tb--te) , is determined from the equation 

t e t e  

From the  we l l -known  f o r m u l a  f o r  t he  g e o m e t r i c  c e n t e r  o f  g r a v i t y  o f  a complex f i g u r e  

t e t e  t e  t e  

t~ tZ tb tb (9) 
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we find the expression for determining the total area under the response C curve. 

Proceeding on the basis of the equation describing the fraction of particles in the non- 
gradient zone 

t e  t e  

dq = t l  t b = {~---t 
te t-g-- ~ 

q ~ Ci dt 
t l 

and relations connecting the fraction of particles in this zone with the radius of the same 
zone 

q" ~ R ~ a v  = -~ ' 

we obtain an equation for determining the radius of the nongradient zone 

and the limiting shear stress 

rg-: ' 

% 2L 

Taking Eq. (9) into account, we write the total initial first-order moment in the form 

t e te 

Similarly, we express the running initial first-order moment as follows 

t t e  t 

t z { g , ' - - t  l ) t b tb 

Substituting the values of total and running first-order moments from the last two equations 
into (7) and (8), we obtain a relation for determining the velocity gradient and shear 
stresses in the gradient zone. 

NOTATION 

C, dimensionless concentration of indicator, differential response function; Ci, Cio , 
values proportional respectively to the concentration and mean concentration of indicator on 
the machine response curve, mm; k, integration constant; L, length of capillary tube, m; q, 
flow rate of liquid 2 m3/sec; R, radius of capillary tube, m; r, radius of layer of liquid in 
capillary tube, m; t, mean residence time, sec; v, velocity, m/sec; ~, velocity gradients, 
sec-:; Ap, pressure gradient in the capillary tube, N/ma; O, dimensionless time; ~, shear 
stress, N/m=; To, limiting shear stress, N]m 2. Indices: g, gradient zone; l, lag; e, end; 
b, beginning; n, nongradient zone; av, mean value. 
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ONE APPROACH TO CALCULATING A TURBULENT BOUNDARY LAYER 

ON A SURFACE WITH A COMPLIANT COATING 

A. B. Airapetov UDC 532.526.4 

A method is proposed for calculating a turbulent boundary layer on a surface with 
a viscoelastic coating. The method is based on the introduction of the van Driest 
damping function to account for the effect of the coating on the boundary layer. 

It is now considered proven that the application of a layer of viscoelastic (elastic, 
compliant) material to the surface of a body moving in a liquid or gas may lead to a 50-60% 
reduction in the drag associated with the body. This has been confirmed by several experi- 
ments with different types of coatings (we may recommend the survey [i], which contains an 
extensive bibliography). At the same time, there are studies in which the investigators not 
only failed to find a reduction in drag, but in fact observed the reverse effect. 

Theoretical study of a turbulent boundary layer on such surfaces is complicated not only 
by transient boundary conditions, but also by a lack of detailed knowledge of the dynamics 
of viscoelastic materials. Only in the most recent works [2, 3] have attempts been made to 
take a combined approach to this problem. 

Friction on a solid surface is limited by the interaction of turbulent and viscous trans- 
fer near the surface. One effective approach to accounting for the interaction of viscous 
and turbulent transfer in a turbulent boundary layer close to a solid surface is the intro- 
duction of so-called damping functions, reflecting the dynamics of pulsations in a viscous 
fluid. Such functions have been obtained by different methods by Loitsyanskii, Vulis, and 
van Driest [4] for a boundary layer on a flat plate. For example, van Driest proposed a 
structural form of damping function for the length of the displacement path I in a plane 
boundary layer on the basis of an analysis of harmonic oscillations of an infinite flat plate 
in an unbounded incompressible viscous fluid (the Stokes problem) decaying as they penetrate 
into the fluid according to the law exp[--y(~/~)~/2], where m is the frequency of the oscilla- 
tions; ~ is the kinematic viscosity coefficient of the liquid: 

l + = • (y+), F (y+) = 1 -- exp ( - - y+ /a ) ,  (i) 

where y+ = yu,/~; ~ = 0.4; a = 26 are universal empirical constants. 

Further, several authors used van Driest's idea as a basis for constructing damping 
functions for certain more complex flows (turbulent boundary layer on porous flat [5] and 
cylindrical [6] surfaces). 

The attractiveness of van Driest's idea derives first of all from the fact that well- 
known solutions of the Navier--Stokes equations are used (in one form or another) to construct 
a structural form of damping function for a given complex turbulent flow. In such a situa- 
tion, it would be of interest to construct a damping function of the van Driest type which 
would convey information on the properties of the viscoelastic coating mentioned earlier. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 40, No. 4, pp. 657-663, April, 1981. 
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